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Abstract 

Reference evapotranspiration (ETo) is defined as the rate at which readily available soil water 

is vaporized from specified vegetated surfaces (Jensen et al., 1990). The CANFIS technique is 

used for predicting the desire parameter of a fuzzy system when fewer meteorological 

variables are available. To conduct the research work, weather data rainfall (𝑅𝑡), maximum 

temperature (𝑇𝑚𝑎𝑥), minimum temperature(𝑇𝑚𝑖𝑛), bright sun shine hour (SSH) and wind 

speed (WS) were collected. Aforementioned data of metrological observatory Indore were 

taken from Indian Meteorological department Pune Maharashtra. Since Penman Monteith 

(P-M) equation required maximum numbers metrological variables to estimate reference 

evapotranspiration, CANFIS model was used for predicting the same using minimum 

metrological variables. Thus, this research presents the comparison of estimation of 

reference evapotranspiration using CANFIS model and Penman Monteith (P-M) equation. 

The performance of the CANFIS models was evaluated with Penman Monteith equation 

using sum of square error (SSE), root mean square error (RMSE) and R 2 values. It was found 

that the highest CE value varied from 0.748 to 0.949 during training and 0.971 to 0.949 

during testing period, minimum RMSE values varied from 1.640 to 0.692 during training and 

0.523 to 0.692 during testing period similarly the ‘r’ values was varied from 0.864 to 0.981 

during training and 0.994 to 0.981 during testing period of the models. This study revealed 

that the Penman-Monteith (P-M) equation and CANFIS model showed very close similarities 

in estimation of reference evapotranspiration. On the basis of statistical analysis, the 

CANFIS-9 model was found best to estimate reference evapotranspiration over others and 

may therefore be adopted for estimating ET0 in the regions with reasonable degree of 

accuracy. 

Keywords ANN, CANFIS, Evapotranspiration, Penman Monteith and Metrological 

observations.  

Introduction 

Evapotranspiration (ET), the combined process of water vapor transfer from the Earth's 

surface through evaporation and transpiration, is a critical component of the Earth's 

hydrological cycle with substantial implications for various sectors, including agriculture, 

hydrology, and environmental science (Allen et al., 1998). ET's significance in hydrology, 

climate science, and environmental conservation cannot be overstated. It directly affects 

local and global climates by influencing temperature, precipitation, and the availability of 
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water resources. In regions with water scarcity, such as arid and semi-arid areas, 

understanding and accurately estimating ET are pivotal for sustainable water management 

(Allen et al., 1998). Furthermore, precise ET data contribute to ecosystem preservation by 

guiding water allocation to wetlands, rivers, and lakes. ET also plays a role in climate change 

studies, as shifts in ET patterns can impact regional climate variables (Gao et al., 2015). 

Accurate ET estimation is essential for informed decision-making in water resource 

management, irrigation planning, climate modeling, and ecological studies.  

Historically, several methods have been employed to estimate ET, including the 

Penman-Monteith equation, energy balance methods, and lysimeter measurements. The 

Penman-Monteith equation, endorsed by FAO (Allen et al., 1998), is considered the standard 

for ET estimation, incorporating various meteorological parameters. The ET0 is commonly 

estimated by either physically based equations (Penman, Penman-Monteith, etc.) or 

empirical relationships between meteorological variables (Hargreaves, Hargreaves-Samani, 

Blaney-Criddle, etc.). Reference evapotranspiration can be obtained by direct and accurate 

techniques with special equipment, such as lysimeter, or estimated indirectly by 

mathematical models to provide good results (Alves Sobrinho et al., 2011). Yildirim et al., 

2014, prepared daily evaporation prediction models by using empirical Penman equation, 

Levenberg Marquardt algorithm based on "Feed Forward Back Propagation Artificial Neural 

Networks (LMANN)", radial basis neural networks (RBNN) and generalized regression neural 

networks (GRNN). Developed models were compared in this study and it was found that the 

results of neural network models are statistically more meaningful than the Penman 

equation. FAO-56 PenmanMonteith method is considered as the best indirect method to 

estimate ET0 under various agroclimatic conditions using meteorological data as input 

variables (Irmak et al. 2003). These traditional methods have demonstrated utility but often 

require extensive input data and may be impractical in data-scarce regions.  

The CANFIS model offers an alternative that leverages the strengths of neural networks 

and fuzzy logic, enabling a more adaptive and efficient approach to ET estimation (Gao et al., 

2015). The CANFIS model is a hybrid computational framework that merges artificial neural 

networks (ANNs) and fuzzy logic. ANNs excel in capturing complex, non-linear relationships 

in data, while fuzzy logic can manage uncertainty and linguistic terms (Jang, 1993). The 

CANFIS model comprises three primary layers: the input layer, the fuzzy layer, and the 

output layer. The input layer accommodates meteorological and environmental variables, 

which are then transformed into linguistic variables in the fuzzy layer using membership 

functions to describe the association of each variable with linguistic terms (Kisi et al., 2010). 

The architecture of the CANFIS model is pivotal to its effectiveness in ET estimation. The 

input layer receives meteorological data, including temperature, humidity, wind speed, and 

solar radiation, which are crucial factors affecting ET. The fuzzy layer transforms these inputs 

into linguistic variables, such as "low," "moderate," or "high," with the help of membership 

functions. These linguistic variables are then used to develop fuzzy rules for ET estimation, 

allowing the model to account for complex interactions between environmental factors (Kisi 

et al., 2010). One of the distinguishing features of the CANFIS model is its adaptability. It 

incorporates a learning algorithm that continuously adjusts the membership functions and 

fuzzy rules within the fuzzy layer as more data becomes available. This adaptability enables 

the model to evolve and enhance its performance over time, making it suitable for regions 

with varying climates and land use patterns (Gao et al., 2015).  
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The CANFIS model offers several advantages for ET estimation, including its ability to 

capture non-linear relationships, adapt to changing conditions, handle uncertainty, rely on 

empirical data, and operate with reduced data requirements (Kisi et al., 2010). CANFIS has 

found applications in various fields, such as agriculture, hydrology, environmental studies, 

and climate modeling. It assists in optimizing irrigation schedules, water resource 

management, ecosystem preservation, and improving climate change predictions (Gao et al., 

2015). Despite its advantages, CANFIS faces challenges and limitations, including its 

dependence on data quality, complex model structure, computational demands, and 

susceptibility to overfitting (Kisi et al., 2010). The CANFIS model presents a promising 

approach to accurate ET estimation, blending neural networks and fuzzy logic to adapt to 

changing environmental conditions. This introduction has highlighted the significance of ET, 

the CANFIS model's structure, its advantages, applications, and limitations. Subsequent 

sections will delve deeper into the model's components, the process of ET estimation using 

CANFIS, and case studies illustrating its effectiveness in various contexts. 

Materials and Methods 

Evaporation can directly be measured by atmometer or can be predicted by empirical 

equations, (Penman, 1948). This study computed 10 years data from year 2007 to 2016 of 

Indore region in which 1220 numbers of complete patterns were taken for study after pre-

analysis of data. The pre analysis includes removal of outliers using exploratory data analysis. 

CANFIS model comprised of 4 input variable such as wind speed, sunshine hour, minimum 

and maximum temperature to estimate the reference evapotranspiration. The flowchart of 

the methodology has been shown in Figure 2. 

Estimation of reference evapotranspiration by Penman-Monteith method: 

Many equations have been developed for estimating reference evapotranspiration 

(ET0). Penman-Monteith FAO-56 equation has been used for estimating reference 

evapotranspiration for the present study. The equation represents a basic general 

description of reference evapotranspiration process. Therefore, the ET0 computed from 

meteorological data by the FAO- 56 Penman-Monteith equation has been chosen as true 

value during training, testing and validating the neural network models. The reference 

evapotranspiration was calculated by the following Penman-Monteith Equation (Allen et.al., 

1998) as shown in equation 1. 

 

=                    Eq. (1) 

 

ET0 = reference evapotranspiration (mm day-1);  

G = soil heat flux intensity (MJM-2 day-1); 

Rn = net radiation at crop surface (MJM-2 day-1);  

T = mean daily air temperature at 2 m height (0C);  

γ = psychometric constant (kPa 0C-1); 

∆ = slope of saturation vapor pressure function (kPa 0C-1); 

es = saturation vapor pressure at temperature T (kPa); 
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ea = actual vapor pressure at dew point temperature (kPa);  

u2 = average daily wind speed at 2 m height (m sec-1). 

 

Eq. 1 determines the ET0 from an assumed grass reference surface in different periods of the 

year. The CANFIS technique has been used for predicting the desired parameter of a fuzzy 

system when enough training data are provided. Neuro fuzzy has been successfully applied 

to solve a number of problems in water recourses planning and management, including: 

stream flow reconstruction (Chang et al., 2004); estimation of suspended sediment transport 

(Kisi, 2004). 

CANFIS architecture: 

CANFIS model consists of 5 inputs viz. rainfall, wind speed, sunshine hour, minimum 

temperature, maximum temperature and 15 nodes in hidden layer and 1 output node as ET0. 

For simplicity, assume that the fuzzy inference system under consideration has two inputs x 

and y and one outputs f. The first-order Sugeno fuzzy model, a typical rule set with two fuzzy 

IF-THEN rules for CANFIS architecture, can be expressed in the equation 2 and 3: 

 

Rule 1: IF x is A1 and y is B1 THEN f1=p1x +q1y +r1                            Eq. (2) 

Rule 2: IF x is A2 and y is B2 THEN f2=p2x +q2y +r2                                                Eq. (3)  

 

Where, A1, A2 and B1, B2 are the membership functions (MF) for inputs x and y respectively, 

p1, q1, r1 and p2, q2, r2 are the parameters in the THEN-part (consequent part) of the first-

order Sugeno fuzzy model illustrated in Figure 1(a). The architecture of CANFIS of five layers 

is illustrated in Figure 1(b). The function of each layer is described below: 

 

Layer 1 (Fuzzification layer): Every node ith in this layer is a square node with a node function 

as on equation 4 and 5; 

𝑂1= µAi (x) for i = 1, 2, or       Eq. (4) 

𝑂1= µBi (y) for i = 1, 2                Eq. (5) 

 

Where, x (or y) is the input to ith node and Ai (or Bi) is a linguistic label (such as small, large 

etc.) associated with this node function. In other words, 𝑂1is the membership function of Ai 

(or Bi) and it specifies the degree to which the given input x (or y) satisfies the quantifier Ai 

(or Bi). Usually, µAi (x) or µBi(y) are chosen to bell–shaped with maximum equal to 1 and 

minimum equal to 0 as shown in equation 6, such as; 

µAi (x;ai, bi, ci) =       Eq. (6) 

 

Where, (ai, bi, ci) is the parameter set. As the values of these parameters change, the bell-

shaped function varies accordingly, thus exhibiting various forms of membership functions 

on linguistic label Ai. Parameters in this layer are referred to a premise parameter. 

 

Layer 2 (Rule layer): Every node in this layer is a circle node labelled Π which multiplies the 

incoming signals and sends the products out. For instance, as shown in equation 7, 

=wi= µAi (x) X µBi (y),      i = 1, 2,       Eq. (7) 

𝑖 
𝑖 

𝑖 
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Each node output represents the firing strength of a rule. 

 

Layer 3 (Normalization layer): Every node in this layer is a circle node labelled N. The ith 

node calculates the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths 

as shown in equation 8: 

= i =  , i = 1, 2,        Eq. (8) 

 

For convenience, the outputs of this layer are called normalized firing strengths. 

 

Layer 4 (Defuzzification layer): Every node ith in this layer is a square node with a node 

function as shown in equation 9. 

 

= i fi = i(pi x + qi y + ri)           Eq. (9) 

Where i I is the output of layer 3, and (pi, qi, ri) is the parameters set. Parameters of this 

layer are referred to as consequent parameters. 

 

Layer 5: (Summation layer): The single node in this layer is a circle node labelled ∑ that 

computes the overall output as the summation of all incoming signals and the equation used 

to estimate is shown in equation 10, i.e., 

 

 
Fig. 1 (a) Sugeno’s fuzzy IF-THEN rule. (b) the equivalent CANFIS architecture. 

 

= overall output = fi =      Eq. (10) 

 

Thus, a CANFIS network can be constructed which is functionally equivalent to a Sugeno first- 

order fuzzy inference system. The daily data of evapotranspiration was categorized into two 
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major sets i.e. a training data set from 2007 to 2014 and testing data set from 2015 to 2016 

of Indore region. The input pairs in the training data set were applied to the network of a 

selected architecture and training was performed using Gaussian and generalized bell 

membership functions for CANFIS models. Figure 2 shows the step-by-step procedure 

followed in research work. 

Training and testing of CANFIS models: 

The daily data of evapotranspiration was categorized into two major sets i.e. a training data 

set from 2007 to 2014 and testing data set from 2015 to 2016 of Indore region. The input 

pairs in the training data set were applied to the network of a selected architecture and 

training was performed using Gaussian and generalized bell membership functions for 

CANFIS models. Fig. 2. shows the step-by-step procedure followed in research work. 

 

 
Fig. 2 Flow chart of research Work. 

Performance evaluation indicators: 

The performance of CANFIS model was evaluated using statistical indices such as root mean 

square error (RMSE), coefficient of correlation (r) and coefficient of efficiency (CE) for 

comparison between observed and predicted values. The equations are given by equation 11 

to 13: 
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RMSE =       Eq. (11) 

 

r =       Eq. (12) 

 

CE =        Eq. (13) 

Where, Xoi and Xpi are the observed and predicted values for ith dataset and N are the total 

number of observations. respectively. ̅X̅o̅ And Y ̅p̅  are the mean of observed (ET0o) 

and predicted (ET0p) values, 

Results and discussions 

The developed CANFIS model was implemented with different combinations of input 

variables and compared with traditional empirical method. For CANFIS modelling daily 

climatic data such as maximum temperature, minimum temperature, rainfall, wind speed 

and sunshine hours were considered as inputs variable while output from FAO PM Method 

has been taken as target. The simulation potential of CANFIS models for evapotranspiration 

was determine using various combinations of input variables. The values of statistical indices 

for the estimation of ET0 using the selected CANFIS models during training and testing are 

presented in Table 1. On the basis of lower RMSE, higher CE and ‘r’ values in the testing 

phase, the CANFIS-9 model was found best performing model. The comparison of observed 

(ETo) and predicted (ET0p) values by CANFIS models during testing period were compared 

using ET0o graph and scatter plot as shown in Figure 3 to 7.  

 

Table 1. Statistical indices for selected CANFIS evapotranspiration models during training and testing 

phase for Indore. 
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Fig. 3 Comparison of observed (ET0o) and predicted (ET0p) evapotranspiration and corresponding 

scatter plot in testing period by CANFIS model 9, neuron 3 during the testing period. 

 

 
Fig. 4 Comparison of observed (ET0o) and predicted (ET0p) evapotranspiration and corresponding 

scatter plot in testing period by CANFIS model 2, neuron 5 during the testing period. 

 

 
Fig. 5 Comparison of observed (ET0o) and predicted (ET0p) evapotranspiration and corresponding 

scatter plot in testing period by CANFIS model 12, neuron 2 during the testing period. 

 

 
Fig. 6 Comparison of observed (ET0o) and predicted (ET0p) evapotranspiration and corresponding 

scatter plot in testing period by CANFIS model 5, neuron 2 during the testing period. 
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Fig. 7 Comparison of observed (ET0o) and predicted (ET0p) evapotranspiration and corresponding 

scatter plot in testing period by CANFIS model 8, neuron 5 during the testing period. 

The scatter plot also indicates that the simulated and observed evapotranspiration values 

during testing period are well scattered around the best fit regression line. It is evident from 

the Table 1.1 the RMSE value for the selected CANFIS models varied from 1.640 to 0.692 and 

0.523 to 0.692 during training and testing periods respectively whereas the CE values varied 

from 0.748 to 0.949 and 0.971 to 0.949 for training and testing periods respectively similarly 

the correlation coefficient (r) varied from 0.864 to 0.981 and 0.994 to 0.981 for training 

testing periods respectively. The increased values of CE and r by CANFIS model during testing 

period indicate good generalization capability of the selected CANFIS model. The RMSE, CE 

and ‘r’ values of CANFIS-9 model in the testing phase were found 0.5232, 0.9712 and 0.9941 

respectively. It was concluded that the CANFIS-9 model was found superior over to other. 

Similar findings were also reported by Yazid et al., (2019, 2020) and Rekha Bai, (2018). 

Conclusion 

This research was conducted to compare the reference evapotranspiration using CANFIS 

model and Penman Monteith (P-M) equation. The performance of these methods was 

evaluated with sum of squared errors (SSE), root mean squared error (RMSE) and R2 values. 

The following conclusions are derived from this study:  

 

• The RMSE value for the selected CANFIS models was varied from 1.640 to 0.692 and 

0.523 to 0.692 during training and testing periods respectively whereas the CE values 

was varied from 0.748 to 0.949 and 0.971 to 0.949 for training and testing periods 

respectively similarly the correlation coefficient (r) was varied from 0.864 to 0.981 and 

0.994 to 0.981 for training testing periods respectively. 

• The RMSE, CE and ‘r’ values of CANFIS-9 model in the testing phase were found 0.5232, 

0.9712 and 0.9941 respectively. 

• Based on the statistical and visual comparisons, it can be concluded that the CANFIS-9 

model was found superior over other model to estimate the reference 

evapotranspiration. 

• The proposed CANFIS models may provide benefit to irrigation engineers and 

agriculturist for better estimation of reference evapotranspiration at the study stations 

with limited data availability. 
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